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Energy dissipation in standing waves 
in rectangular basins 

By GARBIS H. KEULEGAN 
National Bureau of Standards, Washington 

(Received 29 November 1958) 

The modulus of decay of standing waves of finite height is derived by assuming 
that the attenuation of the waves is due to viscous losses in boundary layers close 
to the solid walls. Dampings are observedin six basins of varying sizes. The basins 
are duplicated using glass and lucite for the wall materials. With liquids wetting 
the walls, the losses due to viscosity are slightly increased from causes presumably 
related to surface tension. With a liquid not wetting the walls (distilled water and 
lucite), losses from surface activity, of some obscure origin, outweigh many times 
the losses due to viscosity in the basins of smaller sizes. For moderately large 
basins, for which surface activity may be neglected, the agreement between the 
observed and computed rates of decay is found to be satisfactory. 

1. Introduction 
The aim of the present study is to examine the nature of energy dissipation in 

standing waves in rectangular basins. Observations of the rate of decay of 
standing waves reveal, upon proper analysis, that a significant amount of energy 
dissipation arises from interfacial effects as well as from the better known boun- 
dary-layer effects. This finding broadened the scope of the investigation beyond 
its original purpose, which was to determine how closely the observedrate of decay 
could be predicted by utilizing the boundary-layer concepts as put forth by 
Boussinesq (1898). 

It has been found necessary to re-examine the boundary-layer analysis in order 
t o  obtain valid theoretical results. Briefly, in this analysis it is assumed that the 
entire loss of energy of waves is localized in the boundary layers adjacent to the 
solid walls. The liquid is at rest at the boundaries, and within the layers the motion 
is laminar. The limiting velocity at  the outer edge of the layers is approximated by 
the velocity prevailing in the irrotational core. This is the velocity which would 
be attained at the walls had the layers been absent. The dissipation in the layers 
is assumed to be due solely to viscuus effects associated with ordinary viscosity and 
velocity gradients. The equation giving the balance between the decrease of wave 
energy per cycle and the dissipation in the layers leads to the modulus of decay of 
wave height. The modulus is taken as the measure of the dissipation. 

To examine the existence and the significance of any additional dissipation due 
to surface activities, basins of varying sizes were used. Also, the basins were 
constructed from two different materials, glass and lucite. The experiments with 
the glass basins were conducted using distilled water and glycerol aqueous 
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solutions. These provided a variation in viscosities without changing markedly 
the surface tensions. 

It has been found that for a given viscosity parameter, a type of Reynolds 
number to be defined later, dissipation increases as the size of the basin decreases. 
The increase is significant only for the basins of small size. On the other hand, this 
effect is reduced for ethyl alcohol, a liquid of smaller surface tension. All these 
facts may point to  surface tension as a, source of dissipation arising from the 
adherence of portions of liquids to the glass walls during the wave motion. 

Some curious features were disclosed by the results obtained in the lucite basins 
using distilled water. Here the observed dissipation is twice or three times as 
large as that observed in glass basins. The greater increases are encountered in the 
smaller basins. Clean surfaces of lucite are not wetted by distilled water. When 
aerosol, a wetting agent, is added to the distilled water the dissipation is reduced, 
indeed to a degree that all effects become identical both in lucite and glass. Again, 
when using xylene or a mixture of xylene and a heavy mineral oil, which sub- 
stances do wet the lucite and have alsolow surface tensions, dissipation is likewise 
reduced. All these facts suggest interfacial stresses of very large values as a source 
of dissipation, which differs depending on how the liquid adheres to the walls 
during the wave motion. 

When the surface effects are abstracted, the observed and the computed values 
are brought into better agreement. The observed values after correction are, 
however, still about 10 yo higher than the computed ones. 

2. Dissipation of energy near solid walls 
The modulus of decay is a measure of the energy losses realized during a com- 

plete oscillation. The number of oscillations n equals t /T,  where T is the period of 
waves. One may take Sn to represent the time for a single oscillation. Let SE be 
the increase of wave energy and E the loss of energy from whatever source during 
a single complete oscillation, and thus 

Putting 
a = 2n 1 /oniSn, 

(3) 
E 
G = e-2an, 

equation (1)  gives 

where E, is the wave energy at t = 0, or n = 0. Since E is proportional to the 
square of the semi-amplitudes a, one also has 

e-dlT. (4) 
a 
a0 

- = e-an = 

The quantity a, a dimensionless number, will be referred to as the ‘modulus of 
decay’. From the definition implied in equation (2) it is seen that if B/E be 
independent of n, hence independent of the amplitudes, the modulus of decay 
equals half the ratio of lost energy during a completed cycle to the energy of the 
wave during that cycle. Otherwise, a is half the average value of the correspond- 
ing ratios over the range n. 
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In  the present experiments on the decay of standing waves, the observations 
are made on waves of fhite amplitudes. As in these cases the end extreme 
depressions are smaller than the end extreme elevations, a question arises as to the 
expression of wave energy in terms of the end deflexions. This quantity is needed 
in the evaluation of the modulus of decay of the waves, equation (2). For this 
purpose it suffices to consider the second approximation to the surface heights. 

The body of water of depth H is contained in arectangular basin of length L and 
of width B, as indicated in figure 1. The free surface of the undisturbed water is 
taken as the (x, y)-plane and the axis of z is drawn upwards. The limiting planes 
are x = 0, x = L; y = 0, y = B; and z = 0, z = - H. The velocity components 
parallel to x, y, z are u, v, and w, respectively. 

I 
I 

11 

I 

FIQURE 1. Notation diagram showing baain, standing wave, and axes. 

W h e  second-order theory the velocity potential for the primary mode may be 
written as 

q5 = A ,  cosh k(z + H) COB kx cos a t  + A ,  cosh 2k(z + H )  cos 2kz sin 2at, 

A,  = -ag/acosh kH, 

( 6 )  
where 

A ,  = &A,ak/sinh3 kH, 

with k = n/L and a = 27~1T. 

Accordingly, the particle velocities in the main body of water are 

a2 = gk tanh kH, 

gak cosh k(z + H )  gaZk2 'Osh 2k(z + H ,  sin 2kx sin 2gt, a,= -- sin kxcos d -- ~ 

a coshkH 4 a sinh2kHsinh2kH 
(6) 

and 
gak sinh k(z + H) ga2k2 sinh 2k(z + cos 2kx sin 2at. cos Icx cos at f - - wo=a coshkH 4 a sinh2kH sinh2kH 

(7) 
3-2 



36 Carbis H .  Keulegan 

The surface elevation, when measured from the undisturbed water level, may be 
written as 

(8) h = a cos kx sin at + a(4ak) Nl cos 2kx - a(1ak) N, cos 2kx cos 2at, 
cosh2 kH(cosh 2kH + 2) 

sinh2 kH sin 2kH ' 
N2 = 

cosh 2kH 
- sinh 2kH' 

N -  where 

These equations are equivalent to the results of the second-order theory given by 
Miche (1944). The extreme values of h occur at the instant t = nT +n/2a, and 
are thus h, = a( 1 + $ak[N, + N,]) 

h, = -a( 1 - $ak[N, + N,]) 
( x  = 0 ) ,  
( x  = L) .  

Accordingly, the extreme end deflexions differ in absolute value, the elevations 
being larger than the depressions, and their ratio is 

hl/h, = - (1 + $ak[Nl + N2]) / (  1 - $ak[N, + N,]). (9) 
At no time during the oscillations does the surface of the water in the basin 

assume a horizontal plane position. A residual displacement persisting at time 
h/a = $ak(Nl - N,) cos Zkx, t = 0 has the value 

indicating, since N ,  is larger than N,, the presence of a symmetrical hump of 
small elevation at the central portion of the basin. 

A node in the ordinary sense does not exist. If, however, the node be defined as 
a point of the surface having zero displacement from the initial undisturbed level 
of water and the distance from the basin mid-section be denoted by f: = &L - x, 
the excursions of the node are given by 

sin k[ sin c ~ t  = tak cos 2kf:(N1 - N, cos 2at). 

Denote the maximum value of the excursions, which occurs at time t = n/%, by 
C0. Thus sin kC0 = $ak(Nl + N,) cos 2k5,. (10) 

The energy El of the wave per unit width of the basin may be expressed as 

of which the first integral in the right member represents the potential energy of 
the wave and the second the kinetic energy. The subscript s indicates that the 
quantities are evaluated for points on the surface. Introducing the values of # and 
h from equations ( 5 )  and (8) and neglecting terms involving a%,, the energy is 

El = $npga2/k, a = +(hl - h,), (11) 

which is the expression sought for. 
Conceivably, the loss B may be from different sources representing the sum 

E = € I + € , +  ... +€?, (12) 

(13) 

and thus the modulus may be broken into several parts: 

a = a,+a,+ ...+ a,, 

where 
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We shall denote the loss of energy per cycle arising from viscosity by E~ + E;, of 
which the first represents the loss in the boundaries and the second that in the 
main body of liquid. First the derivation of el will be given. 

Considering the vertical wall y = 0,  and writing z’ = x + H, the particle velo- 
cities in the layer are (following Boussinesq (1898)) 

u - uo = -fi(x, 2’) e - j g  cos (at - Py) 

w - w, = - f2(x ,  2‘) e- lg  cos (at -By), 
(15) 

(16) and 

where P = J(a /2u) ,  u and w are the velocities within the layer, and uo and wo are 
the velocities outside the layer, that is uo = fl(x, 2’) cos at and wo = f 2 ( x ,  2’) cos d. 
From equations (6) and (7) neglecting terms involving a2k2, one obtains 

and 

gak cosh kz‘ 
a coshkH 

gak sinh kx’ 
a coshkH 

fl(x, 2’) = - - ___ sin kx 

f&, 2‘) = + __ ___ cos kx. 

At the bottom z = - H (or x’ = O ) ,  

where 

- ZC, = - f3(x) e-a‘j cos (crt - x’B), 

gak sinkx f3(x) = -- ____ 
(T coshkH’ 

At the wall x = 0, 
w - w0 = -f4(2’) e-@ cos (crt - xp), (18) 

where gak sinh kz’ 
f4(2’) = -____ cr coshkH’ 

Again, considering the vertical wall y = 0, the amount of energy dissipated in 
the viscous layer adjacent to the wall and during a complete cycle of period 
T = 27r/ais 

AEl = p s,” s,” s,””” [ (e) + rg) ”1 dt dy dx dz’, 

or, substituting from equations (15) and (IS), 

g2a27r2 pp sinh2kH 
= -ax 4 J(5) cosh2 kH ‘ 

The same amount of energy is dissipated also near the wall y = B. Near the wall 
x = 0, the corresponding loss of energy is given by 

AE2 - g2a2 71 dry) Bk 2kH -kH] . a2 2 2 0  cosh2kH 2 

The same amount of energy is dissipated also near the wall x = L. 
Near the bottom, x = - H  or x‘ = 0, the corresponding loss is given by 

g2a2 rr2 Bk AE, = Jp) 
2a cosh2kH’ 



38 @arbis H .  Kezclegalz 

The total amount of energy lost during a completed cycle, el, is now 

el = 2AE1 + 2AE2 + A&, 
and from equations (19), (20), and (21) 

(22) 

where 

Equations (1 1) and ( 2 2 )  give for the modulus of decay, a, = e,/2E1, the value 

x = (n + Bk) + Bk(n - 2kfI)/sinh 2kH. 

= dXv&~)/~. (23) 
The modulus varies directly with the number v&T&/B, which is the viscosity 

parameter, a form of the Reynolds number. For basins and waves similar in 
shape the modulus varies directly with the viscosity parameter. 

When the loss per cycle in the main body due to viscosity, €1, is computed by 
the method of Lamb (1932,s 348) applied to the case of progressive surface waves, 
it proves to be E; = ,una2gkBT. Hence, the corresponding modulus a; = ei/2E1 is 

a; = 2k2B2vT/B2. (24) 
This part of the modulus varies as the square of the viscosity parameter. 

3. Experiments on the characteristics of waves 
The study of the damping was made with various basins of geometrically similar 

construction but of different sizes. The dimensions of these together with the 
water depths are given in table 1. In  the basic dimensions the experimental 
waves were similar; the depth ratio HIL = 0.425, width ratio BIL = 0.217, and 
kH = 1.335. 

Basin H (cm) L (cm) B (cm) HIL BIL T (em) 
A 103.0 242.0 52.6 0.425 0-217 1.89 
B 40.4 94.7 20.6 0.426 0.217 1.20 
C 20.1 47.4 10.1 0.424 0.217 0.83 
D 15.7 37.0 8.0 0.425 0.216 0.73 
E 11.8 27.8 6.1 0-425 0.218 0.64 
F 10.1 23.8 5.2 0.425 0.218 0.59 

TABLE 1. Dimensions of basins 

All the boundarjes of each basin, the side walls, the end walls, and the bottom 
were smooth. Two sets of basins were constructed, one of glass and the other of 
lucite. The walls were transparent, and thus the surface could be viewed either 
from the sides or from the ends. 

The essential details of the apparatus are shown in figure 2. The waves are 
produced by rocking the basin on a transverse axle placed at the mid-bottom. The 
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cam is actuated by a variable speed d.c. motor. The eccentricity of the cam deter- 
mines the amplitude of the rocking motion. At the resonance frequencies the 
waves are readily built up to large amplitudes even when the eccentricities of the 
cam are small. After the creation of a wave of the desired height the rocking is 
stopped, care being taken to immobilize the basin during subsequent surges. 
Observations may then be made of the deflexion of the ends or the excursions of 
the nodal point or the gradual attenuation of the wave height. 

/--- 
A r 1 -  I 1 

I I 
FIGURE 2. Sketch of rocking basin apparatus. 

FIGURE 3. deflexions. 

To establish the range of wave heights within which the result of the second- 
order theory as derived above is applicable, the examination is confhed to the 
end deflexions and to the maximum nodal excursions. The results of observation 
on the end deflexions are given in figure 3 where the ratio -hl/h2 is plotted 
against h,/H as shown by the circles. These are average values determined from 
three basins, the two larger ones and the smallest. The theoretical curve is 
computed from equation (9). As long as h&, that is the ratio of maximum end 
deflexion to the depth of water, is less than &, the ratio of the end deflexions is 
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correctly given by the theory. Above this limit, that is h,/H > +, the observed 
values fall below the theoretical ones. 

It is instructive to consider also the dependence of the extreme nodal excursions 
on the wave height. Representative observations are plotted in figure 4. In  this 
case the width B was 20 cm, and the water surface lines were photographed at the 
times of maximum deflexions. The photographs also showed the images of the 
lines traced on the side wall giving the position of the undisturbed water line and 
the mid-section plane. The desired data were obtained from these photographs. 
The theoretical curve was computed from equation (10) with IcH = 1.335. For the 
wave height ratios a/H smaller than 0.3, the agreement between theory and 
observation is satisfactory. For ratios greater than this the observed nodal 
excursions are smaller than the theoretical estimates. 

0-00 005 0.10 0.15 0.20 0.25 0.30 035 
alH 

FIGURE 4. Variation in the extreme excursions of the node. 

It is inferred that the second-order theory as given above is sufficiently 
accurate when the deflexion ratio h,/H is less than +. 

4. Energy dissipation in glass basins 
The determination of rate of decay of the waves from observation of successive 

end deflexions was carried out in two different ways, depending on the size of the 
basin. For the larger basins visual readings were made simultaneously by two 
observers, while for the smaller basins the information was obtained by photo- 
graphing the wave surface with a motion-picture camera and later examining 
individual frames for the maximum end positions. On the basis of information 
given in figure 3, the value - h, corresponding to a given k, is ascertained, and the 
quantity a = i(hl - h2), the semi-wave height, is formed. Finally, the curve 
giving this a as a function of t  is established. 

To show that the observed dampings of standing waves in these experiments 
are characterized by a modulus of decay a as required by equation (4) and with 
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the amplitude as a = i(h1 - h2), the data with water from the three channels A ,  B 
and C are given in figure 5.  The plotting is semi-logarithmic and a/., is plotted 
against t /T .  In  these data, a, is the initial value, a, = 0.25H. The alinements of 
the observed points are linear and a constant value of the modulus of decay is 
assured in each case. 

$IT 
F I ~ ~ E  6 .  Examples of decay of amplitude of oscillations with time. 

The modulus of decay in tests considered later is not obtained from curves 
similar to the ones shown in figure 5, but rather, using equation (a), from the 

T 
t ,  

following relation: 
cc. = -log @ ,  

where a, is an initial value and a, a subsequent value, inferior to a,, and t ,  is the 
time for the semi-amplitudes of the oscillations to decrease from a, to a,. Since 
the computed values of the period T of oscillations from equation (5) are in 
agreement with observation, the theoretical values are used. Whenever a curve 
a = a(t) is available, the quantity t, is read from the curve, after a, and a, are 
selected. For reliability of the results concerning the modulus of decay, the latter 
is computed several times in a given test by selecting various values of a, in 
decreasing order while keeping a, the same. 

To determine the effect of viscosity on the modulus of decay, and thus indirectly 
on the rates of energy dissipation, distilled water and glycerol aqueous solutions 
were first chosen. This choice of the liquids provided a considerable variation in 
the viscosity with only insignificant changes in surface tension. To be assured of 
the right values of the viscosity, separate determinations were made of the 
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kinematic viscosity for each concentration at the temperature applying to test 
condition by a modified Oswalt type viscosimeter. 

The effect of viscosity was examined in all of the basins except the largest, with 
B = 52cm, where tests were confined to city drinking water. The observed 
moduli of decay are presented in figure 6, where it is seen that the values depend 
on the width of the basin B as well as on the viscosity parameter. This separate 
dependence on B would not be expected considering the fact that the waves were 

4VT)IB 
FIGURE 6. Observed modulus of decay of amplitudes in glass basins 

Glycerol- Alcohol y = o  
B v*TilB water (a)  (4 (%) 
5.2 19.6 x 10" 0.0695 0.0552 0,0495 

0-0458 6- 1 18-1 x lo4 0-0605 0.0495 
8.0 16.3 x 10" 0.0445 0.0397 0.0375 
10.1 13.6 x 0.0380 0.0349 0.0335 

TABLE 2. Effect of surface tension on modulus of decay 

similar in depth and length in terms of B. This anomaly indicated a possible effect 
arising from some obscure surface activity phenomenon. Supposing that this 
might depend on surface tension, tests were made with ethyl alcohol, which has 
a much lower surface tension than the solutions previously used. A comparison is 
made between the results with alcohol and with glycerol aqueous solution in 
table 2 for equal viscosity parameters. It is obvious that alcohol gives smaller 
dissipation. 

One may break the observed modulus of decay a into two parts, a = al + a2, ax 
being the part due to viscosity and a2 due to surface tension. On the basis of 
dimensional reasoning for similar waves, that is with the ratios B/H and ICH 
invariable, one may deduce that 

a, = a,(v*T*/B), (26) 
and a2 = a2(yT2/pB3). (27) 
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Here y is the surface tension of liquid in contact with air. The form of al has been 
determined theoretically as equation (23). As regards a2, an empirical determina- 
tion will be attempted. 

In  figure 6 the straight line passing through the origin and with a slope approxi- 
mating the slopes of the remaining straight lines drawn through the observed 
points from the various basins is considered as the limiting line. It represents al. 
The quantity a2 is read as the offset. The dependence of a2, thus determined, on 
the surface parameter is shown in figure 7. The points represented by the circles 

Y Wf BB 
FIGURE 7. Effect of surface tension on the modulus of decay. 

are from tests of the glycerol aqueous solutions and the squares, from alcohol. The 
results from the two groups are in agreement and suggest that the conjecture that 
surface tension is involved in the dissipation may be a valid one. The line in 
figure 7 corresponds to 

YT2 a2 = 0.10- pB3 - 
5. Discussion of energy dissipation due to viscosity 

Presumably, if the part of the modulus of decay u2 computed on the basis of the 
empirical relation (28) be subtracted from the observed modulus of decay a, the 
remaining part a, is due to viscosity, assuming that no other causes of dissipation 
are present. The experimental values of a,, thus determined from the tests with 
the glass basins, are shown in figure 8. Introducing numerical values in equation 
(23), which purports to give the modulus of decay as relating to the boundary 
layers close to the solid surfaces, there results 

a1 = 2*16(~T) i /B,  (29) 
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the graph of which is the lowest curve in figure 8. Between the two extremes there 
is a disparity of the amount 

(a!-~~,)/a,  = 6*2(vT)*/B, (30)  
where the superscript 0 refers to the experimental curve. 

It is not necessary that this disparity be ascribed to observational difficulties or 
to uncertainties of analysis. For two other items may still be considered. One is in 
regard to the reduction of channel width owing to the boundary layers. Let this 
reduction be 2A, and the corresponding change in the modulus be Aa,. From 
equation ( 2 3 )  it follows if B/L be small, that Aa,/a, = 2A/B. It might be said for 

J(VT)IB 
FIGURE 8. Modulus of decay due to viscosity in glass basins. Glycerol solutions 

the purpose of estimation that nearly all of the kinetic energy of the layer of 
thickness 

is concentrated in the portion of the width $8, and the layer of negligible energy 
is &a. Identifying A with $8, one has 2A = r(Zv/g)* and hence 

8 = 2?T(2v/a)4 (31) 

Aal/a, = n*(vT)*/B. ( 3 2 )  
The second theoretical curve of figure 8 is evaluated with this correction added. 

I n  view of the change the disparity now between the observed and the com- 
puted modulus is about 

If it be assumed that there is dissipation in the body of water due to internal eddy 
agitation, then the last written relation may be used to obtain the eddy viscosity 
of this agitation. If one may assign the value mv to the eddy viscosity, then 
equation (24 ) ,  which purports to give the part of modulus of decay due to internal 
dissipation, yields (taking a, from equation (39)) 

(ay-~~ol , -A~~,) /a ,  = 4*5(vT)*/B. (33 )  

a+l = 0.43 m( vT)*/B. (34 )  
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Comparing this with equation (33), since a; = (a: - a1 - Actl), it is seen that the 
eddy viscosity of the internal agitation is about 10 times the natural viscosity, 
a plausible value. 

For the purpose of ascertaining if an internal agitation is actually present, the 
following observation was made in the basin with B = 20cm and H = 40cm. 
While the water in the basin was still, a saturated solution of potassium per- 
manganate was introduced by means of narrow tubes and allowed to form a layer 
2 mm thick and spread evenly over the entire area of the bottom. In the first few 
oscillations, portions of coloured liquid were seen to rise from the bottom in the 
proximity of the ends. The initial rise amounted to about 6 cm, and subsequently 
the coloured portions were seen to move towards the basin mid-section. During 
this motion the areas of coloured portions grew in size. As measured from the 
photographs taken at 10 sec intervals, the sequence of the sizes corresponding to 
these successive times proved to be 42, 160,520 and 670 cm2. There were circula- 
tions in the two cells of the basin and also very marked dispersions. Because of the 
ratio of wave height to boundary layer thickness being very large, it was not 
possible to relate the observations to the analytical results of Longuet-Higgins 
(1953) on mass transportation in standing waves. 

The elementary theory of boundary layers does give adequately the major 
portion of viscous losses in the standing waves of the smooth-walled basins. The 
same method may be used with confidence to evaluate similar losses for pro- 
gressive waves in laboratory studies relating to models. 

6. Anomalous mode of decay in lucite basins 
The modes of decay of oscillations in lucite basins using distilled water sur- 

prisingly enough prove to be different. Dissipation is much greater in comparison 
to that with a glass basin. The difference becomes more pronounced with de- 
creasing basin sizes. To afford a more detailed comparison, the results with the 

Lucite Glass 

20.0 0.00530 0.0224 0.0164 
10.1 0.00886 0.0497 0.0245 
8.0 0*01021 0.0624 0.0290 

0.0398 6.1 0.0 1323 0.1165 
5-2 0.0 146 1 0.1382 0-0451 

TABLE 3. Modulus of decay in lucite and glass basins (distilled water). 

B (emf Y W $ U 3  (4 (4 

lucite channel are entered in table 3. Another point worthy of mention is the fact 
that with lucite the modulus of decay is not a constant but increases with 
decreasing amplitudes. To illustrate the point, the results from the three smaller 
channels are collected in table 4. Here a is the average of the modulus for the 
first n oscillations. The average value increases with n, indicating that the ratio of 
lost energy during a cycle to energy of wave increases very markedly as the 
amplitudes of oscillations become smaller. 
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To render a graphic comparison between lucite and glass, the data of table 3 are 
reproduced in figure 9. Of the three curves, the upper one refers to the lucite 
results for large amplitudes of oscillations. The remaining two refer to the glass 
results, the lower curve representing purely viscous effects. Here again with the 
lucite results the observed modulus of decay may be broken into two parts, a, and 
a2, a, representing the part due solely to viscous actions and a2 due to a surface 

B (cm) v*T* JB aola 12 U 

8.0 0.01028 4.28 23 0.0632 
6-46 26 0-0632 
6.90 28 0.0690 
7.97 29 0.0716 

10-77 31 0.0766 
14.23 33 0.0812 

6.1 0.01331 6.53 16 0.1173 
8.30 17 0.1245 

10.41 18 0.1301 
13.05 19 0.1352 
16.18 20 0.1392 
23.39 22 0.1433 

5.2 0.01463 5-21 11 0.1501 
6.79 12 0.1596 
9.60 13 0.1740 

15.15 14 0.1941 

TABLE 4. Variation of modulus of decay with amplitude 
(distilled water in lucite basins) 

activity of some kind. Effecting the separations, the resulting a2 is plotted in 
figure 10 against the surface tension number based on the surface tension of 
distilled water. The distribution of the points may for simplicity be represented 
by the straight line 

a2 = 0.6- 

Comparing this with equation (28), it is inferred that the loss of energy from sur- 
face activity of distilled water in contact with lucite, is about six times as large as 
when distilled water is in contact with glass. 

Since distilled water wets glass but does not wet lucite, the latter fact is 
regarded as the only cause of the anomalous and large decay conditions in the 
lucite basin tests. To put this explanation to task, a parallel series of experiments 
were conducted, with glass and with lucite basins having B = 10-0 cm, starting 
with distilled water and then progressively adding amounts of aerosol. Aerosol, 
a wetting agent, causes the water to adhere to lucite. The tests were repeated 
three times to test the reliability of this procedure. The average results are shown 
in figure 11, where the modulus of decay from larger amplitudes are plotted against 
the concentration of aerosol. With the additions of aerosol, the loss of energy of 
the oscillation in the lucite channel decreases gradually, and finally no difference 
can be seen between the results in the two basins. During the addition of aerosol, 
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FIGURE 9. Modulus of decay in glass and lucite basins. Distilled water. 
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FIG- 10. Surface activity effect in lucite basins. 



48 Garbis H .  Keulegan 

the surface tension of the liquids was determined. The specific tension as a func- 
tion of aerosol concentration is shown in figure 12. Referring once more to 
figure 11, it will be noted that a very slight addition of aerosol to distilled water 
in a glass basin causes a marked increase in the losses. For this no explanation can 
be given. However, here again the losses in general decrease with the aerosol 
concentration, and the decrease is presumably due to the lower surface tension. 

FIGURE 11. Effect of aerosol in distilled water in lucite and glass basins. 

FIGURE 12. Surface tension of water charged with aerosol. 

To demonstrate further that, with liquids naturally wetting the lucite, in- 
creased losses are not realized, additional tests were conducted with the four 
smaller lucite basins employing xylene and a mixture of 25 % xylene and marcus 
oil. These liquids readily spread over lucite and have low surface tensions. The 
resulting values of the modulus of decay from these runs after subtracting the 
part a2 due to surface tension, this part computed using the empirical result of 
equation (28), are reproduced in figure 13. The curve drawn through the points 
reproduces almost identically the similar curve obtained with glass basins. 
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Possibly the large additional losses of energy, in the cases in which liquids do 
not wet the material of the walls, are due mainly to interfacial tension. This comes 
into play during the surging actions of the oscillations and, alternately, a t  the 
times when the liquid renews its contact with the walls. The resulting effects are 
more severe when basins are small. In  fact in small basins the appearance of the 
liquid surfaces during oscillations are rough, irregular and sometimes are covered 
with ripples and small waves. I n  contrast, when the liquids wet the walls and 
surface tension is small, liquid surfaces are smooth and have a glossy appearance. 
It is also conceivable that added losses result from the hydrodynamic contact 
conditions in the interior wall surfaces between liquids and the walls that are not 
wetted by the liquid. To confirm or to negate the latter possibility and in general 
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FIGURE 13. Modulus of decay due to viscosity in lucite basins, Wetting liquids. 

to offer a satisfactory explanation of questions considered in this section, the 
study has been extended to the damped oscillations of circular disks immersed in 
liquids, to the vertical oscillations of plates and polished brass rods partially 
immersed, and the direct measurement of meniscus forces on partially immersed 
plates during a given cycle. It appears that the data of the new tests would be 
suitable for the evaluation of the dissipation from a meniscus. The need for such 
a study was first emphasized by Benjamin & Ursell(l954). Using a 5.4 cm Perspex 
tube for the experiments to confirm their theory of stability of plane surfaces, they 
found a rate of dissipation twenty times the value calculated from viscous dissipa- 
tion. This is in line with the above expressed idea that the dissipation from 
meniscus becomes more pronounced when the vessel of a hydrophobic material 
containing the liquid is made smaller. In  the experiments of Case & Parkinson 
(1957) a somewhat different situation is encountered. By polishing the inside 
surfaces of brass cylinders, the damping rates of the surface waves attained the 
values calculated from viscous dissipation. As the corresponding losses for 
the unpolished cylinders were 3 or 3 times as large, a question is posed as to 
the effects of very small roughness on damping. It would seem that the desired 

4 Fluid Mech. 6 
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explanation should be such as to relate the state of metal surface to the meniscus 
deformation. 
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